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This article presents a mathematical framework that characterizes a transversely isotropic piezo-visco-thermo-
elastic medium within the context of the dual-phase lags heat transfer law (PVID) applied to an elastic medium 
(ES). Specifically, the study investigates the propagation of plane waves within the elastic medium and their 
interaction with the imperfect interface of the ES/PVID media. This interaction results in two waves reflecting back 
into the elastic medium and four waves propagating through the piezo-visco-thermo-elastic medium. The research 
explores the distribution of energy between the reflected and transmitted waves by analyzing amplitude ratios at 
the boundary interfaces, considering factors such as phase delays, viscosity effects, and wave frequency. The study 
illustrates the influence of boundary stiffness and viscosity parameters on these energy ratios through graphical 
rePresentations. The study's findings are consistent with the principles of the energy balance law, and the research 
also delves into specific cases of interest. Overall, this investigation provides insights into wave behavior within 
complex media and offers potential applications across various fields. 
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1. Introduction 

 
 In recent years, researchers have shown considerable interest in investigating various models of an 
elastic solid under distinct physical fields, such as viscous, thermal, piezoelectric, and others. Among these 
materials, the piezoelectric material is from the core of modern studies and investigation. 
 Mindlin [1] is recognized as the trailblazer in establishing the governing equation for thermal piezo-
elastic materials. Building upon Mindlin's work, Nowacki [2, 3] further elaborated on the foundational 
principles governing thermal piezo-elastic substances. Utilizing Mindlin's theory of piezo-thermoelasticity, 
Chandrasekharaiah [4] investigated the propagation of thermal disturbances at finite speeds. The study of how 
plane waves interact with various materials, particularly in terms of their reflection and transmission properties, 
has captured substantial attention from researchers across time. This subject has undergone extensive 
examination, evident from the comprehensive range of references cited in the literature[5-11]. Notably, Gupta 
and colleagues [12-17] made a significant contribution to this domain through their remarkable research on 
wave propagation at the interface of a piezo-thermo-elastic material. In their work, they harnessed advanced 
modeling techniques, specifically the dual-phase lags (DPL) and three-phase lags (TPL) memory-dependent 
derivative (MDD) models. These choices were driven by the models' capability to accurately capture the 
intricate behavior of the material under scrutiny. Moreover, Gupta's investigation incorporated diverse 
temperature theories to enhance the comprehensiveness of their analysis. 
 Viscous materials like amorphous, polymers, semi-crystalline, and bio-polymers play a predominant 
role in many branches of civil, geotechnical, and biomechanical engineering. An extensively recognized 
macroscopic mechanical framework utilized to illustrate the viscoelastic properties of materials is described 
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in [18]. This model elucidates the manner in which an elastic material reacts to stress under conditions where 
deformation is time-dependent yet reversible. Many investigators worked on the different problems of 
viscoelastic and thermo-viscoelastic such as [19-26]. Lotfy and his team conduct extensive research on 
problems related to piezothermoelastic media with photothermal effects, focusing on the hyperbolic two-
temperature model [26-31].  
This article aims to investigate the energy distribution between reflected and transmitted waves at the interface 
of transversely isotropic piezo-visco-thermoelastic and elastic half-spaces, considering their imperfections. 
The analysis is based on the dual-phase lags heat transfer law and focuses on the heat conduction process for 
incident P or SV waves. This study examines the influence of viscosity and boundary contacts on various 
energy ratios, and presents the findings through visual representations. 
 
2. Basic governing equations 
 
 The fundamental equations describing an anisotropic piezo-visco-thermoelastic material within the 
framework of the DPL heat model, in the absence of both heat sources and body forces, are provided by Voigt 
[18], Gupta et al. [14], and Tzou [32] as follows 
 
  ij ijro ro ijr r ijc e E Tσ = − η − β , (2.1) 
 
  ,ij j iuσ = ρ  , (2.2) 
 
  ,i iE = −ϕ , (2.3) 
 
  i i ijr jr ij jD T e E= τ + η + ε , (2.4) 
 
  ,i iD 0= , (2.5) 

  ( )( ), , ,
2 2
q

T ij ij q 0 ij i j i i E21 K T 1 T u C T
t t 2 t

 τ∂ ∂ ∂   + τ = + τ + β −τ ϕ + ρ   ∂ ∂ ∂   

 , (2.6) 

 

where,  v
ijro ijro ijroc c c

t
∂= +
∂

, *
ij ijro rocβ = α . (2.7) 

 
Achenbach [33] provides the following field equations for an elastic solid without body forces: 
 
  , , ,( )e e e e e e

ij i j j i r r iju u uσ = μ + + λ δ , (2.8) 
 
  ,

e e e
ij j iuσ = ρ  ,      ( ), , , , ,i j o r 1 2 3= . (2.9) 

 
2.1. Limiting cases 
 

• If q T 0τ = τ =  in Eq.(2.6), then the current model transforms into Biot [34] model. 

• If , 2
q q T0 0τ > τ = τ =  in Eq.(2.6), then converts into Lord and Shulman [35] model. 

 
 
 



56 Response of stiffness and viscosity on the energy ratios at piezo-… 

3. Problem formulation 
 
 A half-space with transversely isotropic piezo-visco-thermoelastic properties with dual phase lag, 
referred to as (PVID) ( 3x 0> ), is considered in conjunction with an elastic half-space ES ( 3x 0< ). The 
interface between these two materials is imperfect and is depicted in Fig.1. The plane wave propagates within 

the 1 3x x −  plane, and in the context of this two-dimensional problem, we take u  and 
e

u as 
 
  ( , , )1 3u u 0 u= , (3.1) 
 
  ( , , )e e e

1 3u u 0 u= . (3.2) 
 
The constitutive equations governing the behavior of the PVID in the 1 3x x −  plane are given as  
 
  , , ,33 13 1 1 33 3 3 33 3 33c u c u Tσ = + + η ϕ −β , (3.3) 
 
  ( ), , ,13 44 1 3 3 1 15 1c u uσ = + + η ϕ , (3.4) 
 
  , , ,11 11 1 1 13 3 3 31 3 11c u c u Tσ = + + η ϕ −β , (3.5) 
 
  ( ), , ,1 15 1 3 3 1 11 1D u u= η + − ε ϕ , (3.6) 
 
  , , ,3 31 1 1 33 3 3 33 3 3D u u T= η + η −ε ϕ + τ , (3.7) 
 
where  ( )11 11 12 11 13 33c c cβ = + α + α , 33 13 11 33 332c cβ = α + α . 
 
The constitutive equations for the ES in the 1 3x x − plane are given below 
 
  ( ) ,, ,e e e e e e

33 1 1 3 3 3 3u u 2 uσ = λ + + μ , (3.8) 

 
  ( ), ,e e e e

13 1 3 3 1u uσ = μ + , (3.9) 

 
  ( ) ,, ,e e e e e e

11 1 1 3 3 1 1u u 2 uσ = λ + + μ . (3.10) 

 
Equations (2.1)-(2.7) and (3.1)-(3.7) produce the governing equations for the two-dimensional PVID medium as  
 
  ( ) ( ), , , , ,11 1 11 13 44 3 13 44 1 33 1 1 31 15 13 1c u c c u c u T u 0+ + + −β + η + η ϕ −ρ = , (3.11) 
 
  ( ) , , , , , ,13 44 1 13 33 3 33 44 3 11 3 3 15 11 33 33 3c c u c u c u T u 0+ + + −β +η ϕ +η ϕ −ρ = , (3.12) 
 

  ( ) ( )( ), , , , ,
2 2
q

T 1 11 3 33 q 0 1 1 1 3 3 3 3 3 E21 K T K T 1 T u u C T
t t 2 t

 τ∂ ∂ ∂   + τ + = + τ + β +β −τ ϕ + ρ   ∂ ∂ ∂   

  , (3.13) 
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  ( ) , , , , , ,15 31 1 13 15 3 11 33 3 33 3 3 11 11 33 33u u u T 0η + η +η +η +τ −ε ϕ −ε ϕ = , (3.14) 
 
where, ,ij i ijβ = β δ  ij i ijK K= δ , and here i  is not included in the summation.  
 
The non-dimensional quantities can be used as 
 

  ( ) ( )', ' ,e e
ij ij ij ij

1 0

1
T

σ σ = σ σ
β

,     ( ) ( )', ', ,1
1 3 1 3

1
x x x x

c
ω

= ,     ( ) ( )', ' ,1
1 3 1 3

1
u u u u

c
ω

= , 

 

  1t t′ = ω ,     ( ) ( )', ' ,1e e e e
1 3 1 3

1
u u u u

c
ω

= ,      ' 1 31

1 1 0c T
ω η

ϕ = ϕ
β

,  

   (3.15) 

  ( ) ( )', ' ,T q 1 T qτ τ = ω τ τ , ' 1
2
1

T T
c

β=
ρ

, 11 3
3

33 1 0

c DD
T

′ =
η β

, 

 

 where   11
1

cc =
ρ

,  
2

E 1
1

1

C c
K

ρω = . 

 
By utilizing Eq.(3.15) and removing the primes ( ') , we can express Eqs. (3.11)-(3.14), and (2.8), (2.9) in the 
following form 
 

  
22 2 2 2

3
11 1 12 132 2 2

1 3 1 3 11 3

u Ta u a a 0
x x x x xx x t

  ∂∂ ∂ ∂ ∂ ϕ ∂+ − + + − =   ∂ ∂ ∂ ∂ ∂∂ ∂ ∂ 
, (3.16) 

 

  
2 2 2 2 2 2

1
21 22 23 3 24 25 262 2 2 2 2

1 3 31 3 1 3

u Ta a a u a a a 0
x x xx x t x x

   ∂ ∂ ∂ ∂ ∂ ∂ ∂+ + − + + ϕ − =      ∂ ∂ ∂∂ ∂ ∂ ∂ ∂   
,  (3.17) 

 

  

,

2 2

T 31 322 2
1 3

2 222
q 31

q 33 34 352
1 3 3

1 a a T
t x x

uu1 a a a T 0
t 2 x x xt

 ∂ ∂ ∂ + τ + +   ∂ ∂ ∂  
  τ ∂∂∂ ∂ ∂ϕ − + τ + + − + =   ∂ ∂ ∂ ∂∂   

  
 (3.18) 

 

  
2 2 2 2 2

1
41 42 3 43 44 452 2 2 2

1 3 31 3 1 3

u Ta a u a a a 0
x x xx x x x

   ∂ ∂ ∂ ∂ ∂ ∂+ + − + ϕ + =      ∂ ∂ ∂∂ ∂ ∂ ∂   
, (3.19)  

 

  
2 2 22 e2 e 2 e 2 e 2 ee e e

31 1 1 1
2 2 2 2 2 2

3 11 1 1 1 3

uu u u u
x xc x c x x t

    ∂∂ ∂ ∂ ∂α − β β  + + + =        ∂ ∂∂ ∂ ∂ ∂    
, (3.20) 
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2 2 22 e 2 e 2 e 2 e2 ee e e

3 3 3 31
2 2 2 2 2 2

3 11 3 1 1 3

u u u uu
x xc x c x x t

    ∂ ∂ ∂ ∂∂α − β β  + + + =        ∂ ∂ ∂ ∂ ∂ ∂    
, (3.21) 

 
where 
 

  44
11

11

ca
c

= ,     13 44
12

11

c ca
c
+

= ,     31 15
13 1 0

11 31
a T

c
η + η

= β
η

,     44
21

44 13

ca
c c

=
+

,     33
22

44 13

ca
c c

=
+

,  

 

  11
23

44 13

ca
c c

=
+

,     
( )
15 1 0

24
31 44 13

Ta
c c

η β
=

η +
,     

( )
33 1 0

25
31 44 13

Ta
c c

η β
=

η +
,     

( )
11 3

26
44 13 1

ca
c c

β
=

+ β
, 

 

  1 1
31 2

0 1

Ka
T

ω ρ=
β

,     3 1
32 2

0 1

Ka
T

ω ρ
=

β
,     3

33
1

a β
=

β
,     3 0

34
31

Ta τ
=

η
,     11 E

35 2
0 1

c Ca
T

ρ=
β

,  

 

  
( )

15
41

15 31
a η

=
η + η

,     
( )

33
42

15 31
a η

=
η + η

,     
( )

11 1 0
43

31 15 31

Ta ε β
=

η η + η
,     

( )
33 1 0

44
31 15 31

Ta ε β
=

η η + η
,  

 

  
( )

11 3
45

1 15 31

ca τ
=

β η + η
,     

e
e

e
μβ =
ρ

,     
e e

e
e
2λ + μα =

ρ
. 

 
Using the Helmholtz principle, the displacement components in ES may be stated as  
 

  ,
e e

e
1

1 3
u

x x
∂ϕ ∂ψ= −
∂ ∂

    
e e

e
3

3 1
u

x x
∂ϕ ∂ψ= +
∂ ∂

, (3.22) 

 
where the potential functions eϕ  and eψ  meet the subsequent wave equations 
 

  *

e
2 e

2
ψ∇ ψ =
β


,     *

e
2 e

2
ϕ∇ ϕ =
α


     and    * ,
e

1c
αα =  *

e

1c
ββ = . (3.23) 

 
4. Investigation of wave propagation  
 
 Consider the PVID medium to have a plane wave form solution and express it as 
 

  ( )( ) ( ), , , , , , , , exp 1
1 3 1 3 3

xu u T x x t H M N U q x t
c

  ϕ = ιω − − +    
, (4.1) 

 
where , , ,H M N U  indicates the amplitude coefficient. 
 
The homogeneity of a system can be obtained by incorporating Eq.(4.1) into a set of Eqs. (3.16)-(3.19). 
 
  R 0Ω = , (4.2) 
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  ,

2
11 12 13 14 15

2 2
21 22 24 23 24

2
31 32 33 34

2 2
41 41 43 42 43

l q l ql ql l H
qc l q l a q l ql M

R
Nc ql ql l q l
Ucq a q l a q l ql

 + −     + + −   Ω = =   − +      + − − 

,  (4.3) 

 
where 
 

  3
11l c c= − ,     3

12 11l a c= ,     2
13 12l a c= ,     2

14 13l a c= ,     
2

15
cl ι=
ω

, 

 

  2
21 21 23l a a c= − ,     2

22 22l a c= ,     2
23 25l a c= ,     

2
26

24
a cl ι

=
ω

, 

 

  2
31 35l a c= ,     2

32 36l a c= ,     ( )
/

2
T 33 37

33 2 2
q q

1 a a cl
1 2

+ τ ιω
= −

ιω+ τ ιω − τ ω
,     ( )

/

2
T 34

34 2 2
q q

1 a c
l

1 2
+ τ ιω

=
+ τ ιω − τ ω

, 

 

  2
41 42l c a= ,     2

42 44l c a= ,     
2

45
43

c al ι
=

ω
. 

 
 The existence of a non-trivial solution for a system of equations represented by Eq. (4.2) results in the 
formulation of a characteristic equation. 
 
  .8 6 4 2

11 12 13 14 15G q G q G q G q G 0+ + + + =  (4.4) 
 
 The MATLAB software is utilized to solve Eq. (4.4), and the roots are arranged in decreasing order of 
magnitude. For our convenience, we have labeled them as follows: ( )iq i 1 4= −  denotes the roots that include 
positive imaginary parts and ( )iq i 5 8= −  depicts the roots that contain negative imaginary parts. The 
propagation of waves in the electric potential mode ( )eP  is associated with the eigenvalue 4q . The quasi-
propagating modes ( )iq i 1 3= − , are quasi- ( )P qP , quasi- ( )T qT , and quasi- ( )S qS , respectively. The 
value of the coefficients ( )1iG i 1 5= −  may be found in Appendix A. 
Corresponding to each eigenvalue ( )iq i 1 8= −  , the iH , iM , iN , and iU  eigenvectors can be expressed as  
 

  
( )
( )

i

i

42 q
i

41 q

cf
W

cf

Ω
=

Ω
,     

( )
( )

i

i

43 q
i

41 q

cf

cf

Ω
Φ =

Ω
,     

( )
( )

i

i

44 q
i

41 q

cf

cf

Ω
Θ =

Ω
, (4.5) 

 
where 
  

  i
i

i

MW
H

= ,     i
i

i

N
H

Φ = ,     i
i

i

U
H

Θ = , (4.6) 

 
and corresponding to the eigenvalue iq , ( )

i
ij q

cf Ω  denote the cofactor ijΩ .  
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The wave equations solution in the ES medium may be written as 
 

  * *
sin cos sin cosexp expe e e1 0 3 0 1 0 3 0

0 1
x x x xA t A t   − θ − θ − θ + θ   ϕ = ιω + + ιω +      α α      

, (4.7) 

 

  * *
sin cos sin cosexp exp .e e e1 0 3 0 1 0 3 0

0 1
x x x xB t B t

      − θ − θ − θ + θ
ψ = ιω + + ιω +      

β β         
 (4.8) 

 
5. Refraction and reflection coefficients 
 
 It is assumed that when a plane wave, either P or  SV, propagates through the ES medium and impinges 
upon the interface at an angle 0θ  relative to the 3x − axis, it has the potential to generate two reflected waves 
within the ES medium and four transmitted waves within the PVID media. 
 The non-dimensional displacement and stress components, electric potential, thermal temperature, and 
electric displacement in a PVID medium can be expressed using Eqs. (3.3), (3.4), (3.7), (3.15), (4.1), and (4.6) as  
 

  ( ) ( ), , , , , , exp ,
4

1
1 3 i i i i i 3

i 1

xu u T 1 W H q x t
c=

  ϕ = Φ Θ ιω − − +    
  (5.1) 

 

  ( ) ( ), , , , exp ,
4

1
33 31 3 1i 2i 6i i 3

i 1

xD H q x t
c=

  σ σ =ιω Δ Δ Δ ιω − − +    
  (5.2) 

 
where 
 

  13 33 i 33 11 3
1i i i i2

1 0 1 0 31 1 0

c c W cq
T c T T

 η β
Δ = − − + Φ − Θ β β η ιωβ 

,     44 i 44 i 15 i
2i

1 0 1 0 31

c W c q
T c T c

η Φ
Δ = − − −

β β η
, 

 

  
2

33 1 0 11 i 11 31 11 3
6i 33 i i i2

31 33 1 0 33 1 0 33 1 0

T c q c cW
T T c T

 ε β η τ
Δ = −η + Φ − + Θ η η β η β η β ιω 

,     i 1 4= − . 

 

 
 

Fig.1. Reflection and refraction of plane waves in ES and PVID. 
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5.1. Boundary conditions 
 
 The following boundary conditions are assumed to solve this problem, i.e., equally normal and 
tangential stress distribution, discontinuity for mechanical displacement due to imperfect contact of ES and 
PVID media, thermal insulated, and vanishing of electric displacement at an interface, 3x 0= : 
 

  e
33 33σ = σ ,   e

31 31σ = σ ,   ( )e
33 n 3 3K u uσ = − ,   ( )e

13 t 1 1K u uσ = − ,   
3

T 0
x

∂ =
∂

,   3D 0= , (5.3) 

 
where tK , nK , indicate the transverse and normal force stiffness coefficients of a unit layer thickness, 
respectively. 
 Inserting the values of eϕ , eψ , and ( ), , ,1 3u u Tϕ  from (4.7), (4.8), (5.1), (5.2) in the boundary 
conditions (5.3) and with (3.8), (3.9), (3.15), (3.22) yield the non-homogenous system of equations. which may 
be written as 
 
 X QΔ = , (5.4) 
 
where 
 

  ,

11 12 13 14 15 16

21 22 23 24 25 26

31 32 33 34 35 36

41 42 43 44 45 46

51 52 53 54

61 62 63 64

0 0
0 0

Δ Δ Δ Δ Δ Δ 
 Δ Δ Δ Δ Δ Δ 
 Δ Δ Δ Δ Δ Δ

Δ =  Δ Δ Δ Δ Δ Δ 
 Δ Δ Δ Δ
 
Δ Δ Δ Δ  

     ,

1

2

3

4

5

6

X
X
X

X
X
X
X

 
 
 
 

=  
 
 
 
  

     .

1

2

3

4

Q
Q
Q

Q
Q
0
0

 
 
 
 

=  
 
 
 
  

 

 

  2i
3i

t

1
k

 Δ
Δ = ιω + ιω 

,     1i i
4i

n

W
k

 Δ
Δ = ιω + ιω 

,     5i i iD q= Θ ,     i 1 4= − . 

 
(i) For incident P wave 
 

  sine2 2e 2
01

15 e2
1 0

2c 1
T

 β θιωρΔ = − − β α  
,     sine 2

1 2
16

1 0

c 2
T

ιωρ θΔ =
β

,      

 

  sine2 e 2
1 0

25 e2
1 0

c 2
T

ιωβ ρ θ
Δ =

β α
,     cose 2

1 2
26

1 0

c 2
T

ιωρ θΔ =
β

, 

 

  *
sin 0

35
ιω θ

Δ =
α

,     *
cos 2

36
ιω θΔ =

β
,     *

cos 0
45

ιω θ
Δ = −

α
,     *

sin 2
46

ιω θΔ =
β

, 

 

  , ( )i
i e

0

HX i 1 4
A

= = − ,     
e

e 1
5 e

0

AX
A

= ,     
e

e 1
6 e

0

BX
A

= , 
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  1 15N = −Δ ,     2 25N = Δ ,     3 35N = −Δ ,     4 45N = Δ . 
 
(ii) For incident SV wave 
 

  sine 2 e2 2
1 1

15 e2
1 0

c 21
T

 ιωρ β θΔ = − − β α  
,     sine 2

1 0
16

1 0

c 2
T

ιωρ θ
Δ =

β
,      

 

  sine2 e 2
1 1

25 e2
1 0

c 2
T

ιωβ ρ θΔ =
β α

,     cose 2
1 0

26
1 0

c 2
T

ιωρ θ
Δ =

β
, 

 

  *
sin 1

35
ιω θΔ =

α
,     *

cos 0
36

ιω θ
Δ =

β
,     *

cos 1
45

ιω θΔ = −
α

,     *
sin 0

46
ιω θ

Δ =
β

, 

 
  1 16Q = Δ ,     2 26Q = −Δ ,     3 36Q = Δ ,     4 46Q = −Δ . 
 
6. Energy ratios 
 
 Following [14] determine the distribution of energy between different reflected waves within ES 
medium and transmitted waves within PVID medium, occurring at the imperfect interface across a unit area 
of the surface element is determined as 
 

  Re ,13 1 33 3 3 3 3
0

TP u u D K T
T

 
= − σ +σ −ϕ + 

 
  , (6.1) 

 
and for the ES material 
 
  ( )Re .e e e e e

31 1 33 3P u u= − σ + σ   (6.2) 

 
The average energy fluxes for  
 

(i) incident waves (P or SV) 
 

  ( )* Re cos ,
2e 4 e 2 e

IP 1 0 0
1P c A

2
= ω ρ θ

α
   ( )* Re cos

2e 4 e 2 e
IS 1 0 0

1P c B
2

= ω ρ θ
β

,  (6.3) 

 
(ii) reflected waves (P and SV) 

 

  ( )* Re cos ,
2e 4 e 2 e

RP 1 1 1
1P c A

2
= − ω ρ θ

α
     ( )* Re cos

2e 4 e 2 e
RS 1 2 1

1P c B
2

= − ω ρ θ
β

, (6.4) 

 
(iii) transmitted waves (qP, qS, qT and eP) 

 

  Re , ( , , , ).22 3
s 2s 1s s 6 s s 5s s s

0

K1P W H s 1 2 3 4
2 T

 ι= ω Δ + Δ + Δ Φ + Δ Θ = ω 
 (6.5) 
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(a) For incident P  wave 
 
The energy ratios of the reflected waves (P and SV): 
 

  ,
e e
RP RS

RP RSe e
IP IP

P P
E E

P P
= = , (6.6) 

 
and the transmitted waves (qP, qSV, qT, and eP): 
 

  , ( )s
s e

IP

P
ES s 1 4

P
= = −  (6.7) 

 
(b) For incident SV  wave 
 
The energy ratios of the reflected waves (P and SV): 
 

  ,
e e
RP RS

RP RSe e
IS IS

P P
E E

P P
= =  (6.8) 

 
and the transmitted waves (qP, qSV, qT and eP): 
 

  , ( )s
s e

IS

P
ES s 1 4

P
= = −  (6.9) 

 
The interaction energy ratios:  
 

for incident P  wave: ,st
st e

IP

P
E

P
=  and for incident SV wave: st

st e
IS

P
E

P
=   

 
where 
 

  Re .2 3
st 2s s t 1s t s t 6 S t t s 5s s s t

0

K1P H H W H H H H H H
2 T

 ι= ω Δ + Δ + Δ Φ + Δ Θ ω 
 (6.10) 

 
The energy is conserved if  
 

  ( )int

4

s RP RS
s 1

ES E E E 1
=

+ + + =  (6.11) 

 

where int
, ,

4

st
s t 1 s t

E E
= ≠

=   is the resultant interaction energy between the refracted waves. 
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7. Special cases 
 
 Case-1: In the context of a perfect normal boundary when tK → ∞  and nK 0≠ , the modified mnΔ  
for energy ratios of normal stiffness are presented in Appendix B. 
 Case-2: In the context of a perfect transversal boundary when tK 0≠  and nK → ∞ , the modified 

mnΔ  for energy ratios of transverse stiffness are presented in Appendix B. 
 Case-3: In the context of a perfect boundary when tK → ∞  and nK → ∞ , the modified mnΔ  for 
energy ratios of perfect bonding are presented in Appendix B. 
 
8. Discussion and numerical findings 
 
 Using MATLAB software, the distribution of energy ratios that is brought about by the oncoming of 
plane waves of the P or SV types at various angles is calculated by considering a system with an ES medium, 
a material that resembles graphite, and a PVID medium that is close to a material that resembles cadmium 
selenide to illustrate this technique graphically. For numerical computations, the stiffness parameters are 
considered as ,3

nK 20 N m=  3
tK 10 N m=  , and the phase lags are regarded as .q 0 06 sτ = , .T 0 04 sτ =  

such that they meet the criteria set out by Quintanilla and Racke [36]. Following Kumar and Sharma [37], 
cadmium selenide and graphite materials material parameters are shown in Tab.1. Viscoelastic constants are 
given by ( )ij ij ijc c 1 F= − ι , where .11F 0 8= , .12F 0 1= , .13F 0 6= , .33F 0 4= , .44F 0 2=  ( )2Nm− .  

 
Table 1. The values of the materials constant. 
 

Symbol Value Symbol Value 
1K  1 19Wm k− −  3K  1 19Wm k− −  

1β  . 5 2 16 21 10 Nm K− −×  3β  . 5 2 15 51 10 Nm K− −×  
eβ  . 3 10 001 10 ms−×  31η  . 20 160Cm−−  

ω  100 Hz  15η  . 20 138Cm−−  
11ε  . 11 2 1 28 26 10 C N m− − −×  33η  . 20 347 Cm−  

33ε  . 11 2 1 29 03 10 C N m− − −×  eC  1 1260 Jkg K− −  

3τ  . 6 2 12 9 10 Cm K− − −− ×  11c  . 9 274 1 10 Nm−×  

0T  298 K  12c  . 9 245 2 10 Nm−×  
eα  . 3 10 0011 10 ms−×  13c  . 9 239 3 10 Nm−×  
eρ  . 3 32 65 10 kgm−×  33c  . 9 283 6 10 Nm−×  

ρ  35504 kgm−  44c  . 9 213 2 10 Nm−×  
 
 The energy distributions of the incident wave (P, or SV) among different refracted, reflected waves as 
well as interaction waves for welded contact (WC-DPL), normal stiffness (NS-DPL), transverse stiffness (TS-
DPL), and imperfect (II-DPL) interface, in the absence of viscosity are depicted in Figs. (2-25) by dotted red, 
green, blue, and magenta color lines, respectively. The solid line and the addition of the symbol V in the 
stiffness boundary contacts indicate the existence of viscosity. With the help of MATLAB software, all of 
these figures have been magnified. RPE , and RSE  denoted the energy ratios associated with reflected primary 
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P, and secondary SV waves, respectively, and the transmitted qP, qT, qS, and eP waves indicated by iES ; 
i 1 4= − , respectively. The intE  denoted the ratio of interaction energy among all refracted waves. 
 
8.1. For incident primary P wave 
 
 Figure 2 reveals that the magnitude of RPE for the imperfect interface follows the sinusoidal path, and 
the welded contact interface follows the open upward parabolic path corresponding to an angle of incidence 

0 0
00 90< θ ≤ . In contrast, the magnitude of RPE for the TS-DPL and NS-DPL models is close to unity in the 

whole range of considered angle of incidence 0θ . It is noticed that the magnitude of RPE is high near the 
normal and grazing incidences in all types of interfaces.  
 

 
Fig.2. The variability of the energy ratio RPE  vs 0θ . 

 
Fig.3. The variability of the energy ratio RSE  vs 0θ . 

 
 Figure 3 reveals that the magnitude of RSE follows an almost reverse trend as followed by RPE  in all 
considered models. The solid and dotted curves of all four colors are overlaps that indicate that there is no 
remarkable impact of viscosity. 
 Figures 4 and 5 demonstrate how the magnitude of 1ES  and 2ES , respectively, increases gradually 
with the angle of incidence in the presence of viscosity. For all other interfaces other than the welded contact 
interface, the qP and qS modes are excited to close to the grazing incidence. As opposed to this, when viscosity 
is absent, the qP and qS modes remain in elastic half-space close to normal and grazing incidence, but in the 
middle range of incidence, the qP and qS modes become highly significant and move into a piezo-thermoelastic 
medium. In both cases, when viscosity is present or absent, the qP and qS modes propagate more readily at the 
transverse stiffness interface in piezo-thermoelastic media than at other interfaces. 
 Figures 6 and 7 illustrate that variation in magnitude of 3ES  and 4ES  versus an angle of incidence, 
respectively. When the viscosity is present, piezo-thermoelastic media with normal and transverse interfaces 
facilitate rapid propagation of qT and eP waves in the vicinity of grazing incidence. In the absence of viscosity, 
qT and eP modes propagate in a piezo-thermoelastic medium in the mid-range of the angle of incidence for all 
considered interfaces. In contrast, except for the transverse interface for all other interfaces, qT and eP modes 
are intensely stimulated close to the normal incidence, whether viscosity is present or not. 
 Figure 8 shows that, except for the TS-DPL and II-DPL modes, all models under consideration have 
an interaction energy ratio maximum near the normal and grazing incidences. In contrast, the maximum 
interaction energy in these two models occurs at a mid-range of incidence angles. 
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Fig.4. The variability of the energy ratio 1ES  vs 0θ . 

 
Fig.5. The variability of the energy ratio 2ES  vs 0θ . 

 

 
 
Fig.6. The variability of the energy ratio 3ES  vs 0θ . 

 
Fig.7. The variability of the energy ratio 4ES  vs 0θ . 

 

 
 

Fig.8. The variability of the energy ratio intE  vs 0θ . 
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8.2 For incident secondary SV wave 
 
 Figure 9 shows that the magnitude of RPE for the imperfect interface follows a sinusoidal path, and 
the welded contact interface follows an open downward parabolic path concerned with the angle of incidence 

00 66≤ θ ≤ , 0
0 66θ =  is the critical angle after the critical angle. In all considered models, the magnitude of 

the reflected P wave is close to zero. In contrast, the magnitude of RPE for the TS-DPL and NS-DPL models 
is close to zero in the whole range of considered angles of incidence 0θ . Figure 10 reveals that the magnitude 
of RSE follows an almost reverse trend as followed by RPE  in all considered models. The overlaps between 
the solid and dotted curves in all four colors show that viscosity has no noticeable effect. 
 

 
Fig.9. The variability of the energy ratio RPE  vs 0θ . 

 
Fig.10. The variability of the energy ratio RSE  vs 0θ . 

 

 
Fig.11. The variability of the energy ratio 1ES  vs 0θ . 

 
Fig.12. The variability of the energy ratio 2ES  vs 0θ . 

 
 Figures 11-15 shows how transmission wave energy ratios and interaction wave energy ratios behave 
in relation to the angle of incidence. All five graphs exhibit a remarkably similar pattern; however, their 
magnitudes vary depending on the boundaries that are taken into consideration. Except for the normal stiffness 
interface, for all other interfaces, transmission modes (qP, qS, qT, eP) are highly stimulated near the normal 
incidence and propagate in a piezo-thermoelastic medium. In contrast, near the grazing incidence, except for 
the transverse stiffness interface, all other interface’s transmission modes deactivate and remain in the elastic 
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half-space. The transmission modes and interaction energy for the transversal interface follow an the upward 
parabolic route, and the normal interface follows a downward parabolic path. The magnitude of qP and qS 
modes in the presence of viscosity is higher than the corresponding interfaces in the absence of viscosity. On 
the other hand, qT, eP modes, and interaction energy ratios in the absence of viscosity are more than the 
corresponding interfaces with the presence of viscosity. A critical angle 0

0 66θ =  has been observed for the 
imperfect and welded contact interfaces in both cases, presence or absence of viscosity. 
 

 
Fig.13. The variability of the energy ratio 3ES  vs 0θ . 

 
Fig.14. The variability of the energy ratio 4ES  vs 0θ . 

 

 
 

Fig.15. The variability of the energy ratio intE  vs 0θ . 
 
9. Conclusion 
 
 This work employs dual-phase lag theory to investigate the propagation of plane waves at an interface 
of ES and PVID. For incident primary P or secondary SV waves, using the normal mode analysis technique, 
the energy ratios are computed. Eight different models are created to look into how viscosity and boundary 
contacts affect energy ratios. Some of the conclusions drawn from this analysis are listed below. 
The nature of the incidence wave, viscosity, angle of incidence, and physical characteristics of the material all 
affect the energy ratios. Figures 2-15 illustrate how the form of this dependency differs for different waves. 
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The energy ratios RPE  and RSE  for incidence primary or secondary waves exhibit an almost complete reversal 
in the entire spectrum of incidence angles. The variability of the magnitudes of RPE  and RSE  has been 
observed to be impacted by the different types of assumed interfacial boundaries. However, it has been noted 
that viscosity has a negligible impact on this phenomenon. 
 No critical angle for any considered model has been observed for the incidence P wave. In contrast, 
for incidence SV wave, there is a critical angle at 066θ =  for welded contact, and imperfect interfaces have 
been observed. 
 Both cases, for incidence, primary or secondary waves , , ,1 2 3 4ES ES ES ES and intE  follow almost 
similar trends, but their magnitudes are distinct. The significance of viscosity in determining the energy ratios 
of interaction and transmitted waves has been established.  
 Transmitted modes qP, qS, and qT are highly stimulated and easily propagated in the piezo-visco-
thermoelastic medium at the transverse stiffness interface compared to other interfaces near the grazing 
incidence. 
 The sum of the energy ratios for all eight considered models is close to unity at the whole range of 
angle of incidence. As a consequence, the law of energy balance is supported by each model. 
 
Nomenclature 
 
 EC  – specific heat at constant strain 
 c  – apparent phase velocity 
 ijroc  – elastic stiffness tensor 

 v
ijroc  – viscoelastic constants 

 iD  – electric displacement 
 iE  – electric field density 
 ije  – component of strain 
 ijK  – components of thermal conductivity 
 q  – slowness parameter 
 T  – thermal temperature 
 0T  – reference temperature 
 iu  – displacement components 
 ijα  – coupling constants 
 ijβ  – thermal moduli tensors  
 ,ijr ijη ε  – piezothermal moduli tensors 
 ,λ μ  – Lame’s constant 
 ρ  – density 
 ijσ  – components of the stress tensor 
 iτ  – pyroelectric constants 
 qτ  – phase lag of heat flux 
 Tτ  – phase lag of the temperature gradient 
 ϕ  – electrical potential 
A superscript " "e  denotes elastic half-space parameters. 
 
Appendix A 
 
  11 12 22 34 42 12 23 34 41G l l l l l l l l= + , 
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  12 14 22 34 13 23 34 13 34 42 14 34 41 41 12 23 34 24 12 34 41 43 12 22 34 11 22 34 42

11 23 34 41 12 21 34 42 12 22 32 43 12 22 33 42 12 23 31 43 12 23 33 41 12 24 31 42 12 24 3

G cl l l cl l l cl l l cl l l a l l l a l l l a l l l l l l l
l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l

= − − − + + + + +
+ + − + − + + − ,2 41l

 

 

  

13 24 41 12 34 41 14 34 43 13 34 24 13 34 13 23 33 13 24 32 14 21 34 14 22 33 14 24 31

15 22 32 15 23 31 13 23 43 13 24 42 14 22 43 14 24 41 15 22 42 15 23 41 13

G a a l l ca l l ca l l ca l l cl l l cl l l cl l l cl l l cl l l
cl l l cl l l cl l l cl l l cl l l cl l l cl l l cm l l cl l

= − − − − + + + + +
− − + − − − + + + + 32 43

13 33 42 14 31 43 14 33 41 15 31 42 15 32 41 41 11 23 34 41 12 23 33 41 12 24 32

24 11 34 41 24 12 31 43 24 12 33 41 43 11 22 34 43 12 21 34 43 12 22 33 43 12 24 31 11 21

l
cl l l cl l l cl l l cl l l cl l l a l l l a l l l a l l l
d l l l a l l l a l l l a l l l a l l l a l l l a l l l l l

+
− + − + − + + + − +
+ − + + + + + +

,
34 42

11 22 32 43 11 22 33 42 11 23 31 43 11 23 33 41 11 24 31 42 11 24 32 41 12 21 32 43 12 21 33 42

l l
l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l

+
− + − + + − − +

 

 

  

14 41 15 23 24 15 31 41 14 24 24 13 33 24 13 43 24 15 41 43 13 24 43 15 22 41 14 33

41 15 32 43 13 33 43 15 31 24 41 11 34 24 41 12 33 14 21 33 15 21 32 14 21 43

G ca l l ca l l ca l l ca l l ca l l ca l l ca l l ca l l ca l l
ca l l ca l l ca l l a a l l a a l l cl l l cl l l cl l l
cl

= − − − + + − + − +
+ − − + + + − + − +
+

,
15 21 42 41 11 23 33 41 11 24 32 24 11 31 43 24 11 33 43 24 11 33 41 43 11 21 34 43 11 22 33

43 11 24 31 43 12 21 33 11 21 32 43 11 21 33 42

l l a l l l a l l l a l l l a l l l a l l l a l l l a l l l
a l l l a l l l l l l l l l l l
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  15 43 15 21 24 41 11 33 43 11 21 33 24 41 15G ca l l a l l l a l l l ca l l= + + + . 
 
Appendix B  
 
Case-1: 3i 1Δ =  where i 1 4= −  
 
 (i) For incident P wave  
 

  *
sin 0

35
ιω θΔ =

α
,     *

cos 2
36

ιω θΔ =
β

.  

 
 (ii) For incident SV wave 
 

  *
sin 1

35
ιω θΔ =

α
,     *

cos 0
36

ιω θΔ =
β

. 

 
Case-2: 4i iWΔ =  where i 1 4= −  
 
 (i) For incident P wave  
 

 *
cos 0

45
ιω θΔ = −

α
,     *

sin 2
46

ιω θΔ =
β

.  

 
 (ii) For incident SV wave 
 

  *
cos 1

45
ιω θΔ = −

α
,     *

sin 0
46

ιω θΔ =
β

. 

 
Case-3: 3i 1Δ = , 4i iWΔ =  where i 1 4= −  
 
 (i) For incident P wave 
 

  *
sin 0

35
ιω θΔ =

α
,     *

cos 2
36

ιω θΔ =
β

,     *
cos 0

45
ιω θΔ = −

α
,     *

sin 2
46

ιω θΔ =
β

. 

 
 (ii) For incident SV wave 
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  *
sin 1

35
ιω θΔ =

α
,     *

cos 0
36

ιω θΔ =
β

,     *
cos 1

45
ιω θΔ = −

α
,     *

sin 0
46

ιω θΔ =
β

. 
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